
# -Bootcamp-How to get Started with HW1P2 Sarthak Bisht, Yooni Choi

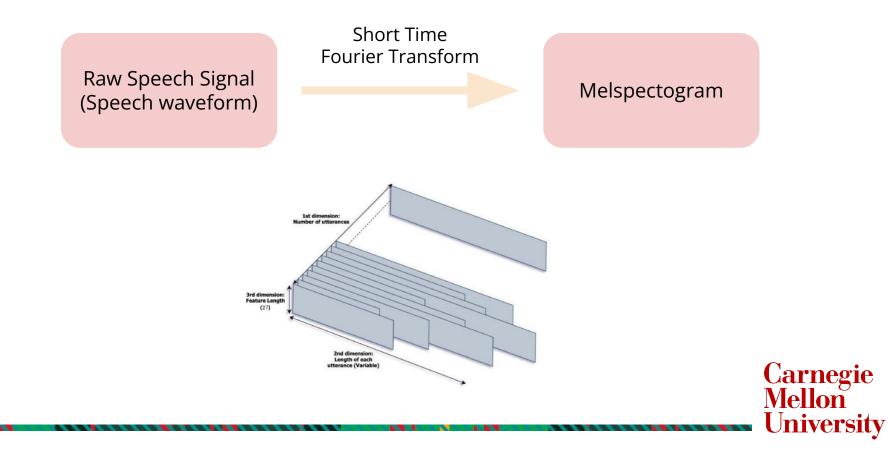


### **Overview**



#### Dataset of Audio Recordings → Predict Phoneme labels

## Workflow




3

Carnegie Mellon

University

Data



#### Data

| PHONEMES = | [        |       |       |       |       |          |          |
|------------|----------|-------|-------|-------|-------|----------|----------|
|            | '[SIL]', | 'AA', | 'AE', | 'AH', | 'AO', | 'AW',    | 'AY',    |
|            | 'B',     | 'CH', |       | 'DH', | 'EH', | 'ER',    | 'EY',    |
|            | 'Γ',     | 'G',  | 'HH', | 'IH', | 'IY', | 'JH',    | 'K',     |
|            | 'ц',     | 'M',  | 'N',  | 'NG', | 'OW', | 'OY',    | 'P',     |
|            | 'R',     | 'S',  | 'SH', | 'т',  | 'TH', | 'UH',    | 'UW',    |
|            | 'V',     | 'W',  | 'Y',  | 'Z',  | 'ZH', | '[SOS]', | '[EOS]'] |

#### Dataset

class AudioDataset(torch.utils.data.Dataset):

def \_\_init\_\_(self, root, phonemes = PHONEMES, context=0, partition= "train-clean-100"): # Feel free to add more arguments

```
self.context = context
self.phonemes = phonemes
```

```
# TODO: MFCC directory - use partition to acces train/dev directories from kaggle data using root
self.mfcc_dir = NotImplemented
# TODO: Transcripts directory - use partition to acces train/dev directories from kaggle data using root
self.transcript_dir = NotImplemented
```

```
# TODO: List files in sefl.mfcc_dir using os.listdir in sorted order
mfcc_names = NotImplemented
# TODO: List files in self.transcript_dir using os.listdir in sorted order
transcript names = NotImplemented
```

```
# Making sure that we have the same no. of mfcc and transcripts
assert len(mfcc_names) == len(transcript_names)
```

```
self.mfccs, self.transcripts = [], []
```

```
# TODO: Iterate through mfccs and transcripts
for i in range(len(mfcc_names)):
```

- # Load a single mfcc
  mfcc = NotImplemented
- # Do Cepstral Normalization of mfcc (explained in writeup)

#### # Load the corresponding transcript

- transcript = NotImplemented # Remove [SOS] and [EOS] from the transcript
- # (Is there an efficient way to do this without traversing through the transcript?)
- # Note that SOS will always be in the starting and EOS at end, as the name suggests.
- # Append each mfcc to self.mfcc, transcript to self.transcript self.mfccs.append(mfcc) self.transcripts.append(transcript)



#### Dataset

#### # NOTE:

```
# Each mfcc is of shape T1 x 27, T2 x 27, ...
# Each transcript is of shape (T1+2) x 27, (T2+2) x 27 before removing [SOS] and [EOS]
```

```
# TODO: Concatenate all mfccs in self.mfccs such that
# the final shape is T x 27 (Where T = T1 + T2 + ...)
self.mfccs = NotImplemented
```

```
# TODO: Concatenate all transcripts in self.transcripts such that
# the final shape is (T,) meaning, each time step has one phoneme output
self.transcripts = NotImplemented
# Hint: Use numpy to concatenate
```

```
# Length of the dataset is now the length of concatenated mfccs/transcripts
self.length = len(self.mfccs)
```

```
# Take some time to think about what we have done.
# self.mfcc is an array of the format (Frames x Features).
# Our goal is to recognize phonemes of each frame
# From hw0, you will be knowing what context is.
# We can introduce context by padding zeros on top and bottom of self.mfcc
self.mfccs = NotImplemented # TODO
```

```
# The available phonemes in the transcript are of string data type
# But the neural network cannot predict strings as such.
# Hence, we map these phonemes to integers
```

```
# TODO: Map the phonemes to their corresponding list indexes in self.phonemes
self.transcripts = NotImplemented
# Now, if an element in self.transcript is 0, it means that it is 'SIL' (as per the above example)
```

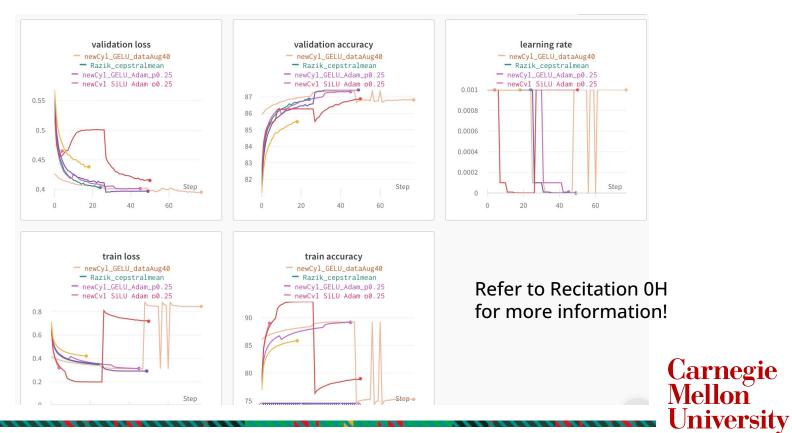


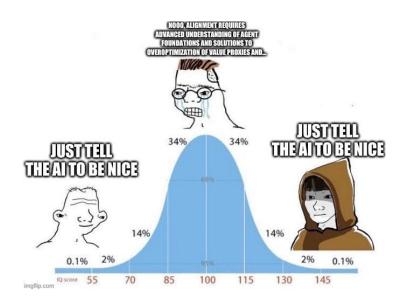
#### **Types of Headache**

**Migraine** 

# e

# Hypertension


Stress




**Tuning Hyperparameters** 



| and account of | 1                              | -                                        | -                                        |                                          |                              | Ì                                                 |
|----------------|--------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------|---------------------------------------------------|
| Epoch          | 5                              | 5                                        | 5                                        | 5                                        | 5                            |                                                   |
| ctx            | 0                              | 4                                        | 8                                        | 16                                       | 8                            | 16                                                |
| layers         | 2                              | 2                                        | 2                                        | 2                                        | 4                            | 1                                                 |
| activations    | relu                           | relu                                     | relu                                     | relu                                     | splus                        | splus                                             |
| architecture   | Pyramid (max(1024, 10*D)> 128) | Pyramid<br>(max(1024, 10*D) -<br>-> 128) | Pyramid<br>(max(1024, 10*D) -<br>-> 128) | Pyramid<br>(max(1024, 10*D) -<br>-> 128) | inverted pyramid<br>(D>2048) | inverted pyramid<br>(max(2D, 128)><br>4D) D>>2048 |
| batchsize      | 256                            | 256                                      | 256                                      | 256                                      | 512                          | 512                                               |
| dropout        | none                           | none                                     | none                                     | none                                     | 0.25 every layer             | 0.25 every layer                                  |
| BN             | none                           | none                                     | none                                     | none                                     | every layer<br>preactivation | every layer<br>preactivation                      |
| optimizer      | ADAM                           | ADAM                                     | ADAM                                     | ADAM                                     | ADAM                         | ADAM                                              |
| scheduler      | stepir                         | steplr                                   | steplr                                   | stepir                                   | reduce on plateau            | reduce on plateau                                 |
| weight init    | gaussian                       | gaussian                                 | gaussian                                 | gaussian                                 | xavier                       | xavier                                            |
| Regularization | none                           | none                                     | none                                     | none                                     | none                         | none                                              |
| Initial LR     | 0.001                          | 0.001                                    | 0.001                                    | 0.001                                    | 0.001                        | 0.001                                             |





- Progressively build on your experiments
- Incorporate some domain knowledge
- Start with several simple architectures



## **High Cutoff Architecture**

https://www.youtube.com/watch?v=dQw4w9WgXcQ
\*wink\*

